((t^2)/(2))+4t+3=0

Simple and best practice solution for ((t^2)/(2))+4t+3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((t^2)/(2))+4t+3=0 equation:



((t^2)/(2))+4t+3=0
We add all the numbers together, and all the variables
4t+(t^2/2)+3=0
We get rid of parentheses
t^2/2+4t+3=0
We multiply all the terms by the denominator
t^2+4t*2+3*2=0
We add all the numbers together, and all the variables
t^2+4t*2+6=0
Wy multiply elements
t^2+8t+6=0
a = 1; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·1·6
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*1}=\frac{-8-2\sqrt{10}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*1}=\frac{-8+2\sqrt{10}}{2} $

See similar equations:

| −3x−9=x-1 | | -25=1/3h-10 | | 7+5x=77 | | −3x−9=x−1 | | 5x+1=5x+31 | | -x/3=12.2 | | 4+13x-7=0 | | 1x+3=9x+7 | | (x+6)+(3x+22)=90 | | -9+6x+3x=18 | | x–19=1 | | 4-(6+2r)+2r=16 | | 6+8v−4v=18 | | 17x+8+12x+4=42 | | 45+3.5x=150 | | 2/3(6x+3)+1=7 | | 6/7w-4/3=-1/5 | | 6(x+3)=2x-12+4x | | 5c-2=24 | | 11x+1+12x+13=24 | | 4x+8=−52 | | -7/3w+1=-3/2w-4/3 | | 5(3x-2)-2(x-1)=15x-10-2x+2 | | -19+11n=14n−4+18 | | -8k+6k=-2k | | 3x+4=-4x+18 | | 3(x+4)=-3(6x-3)+6x | | 9(4b-1=29b+3 | | 1x+3=5x+7 | | x=5x•(2x+7) | | 0=×^2-x-x30 | | 14x-5=`+11x |

Equations solver categories